Adaptive model predictive control using max - plus - linear input - output models ∗

نویسنده

  • V. Krebs
چکیده

Model predictive control (MPC) is a popular controller design technique in the process industry. Conventional MPC uses linear or nonlinear discrete-time models. Recently, we have extended MPC to a class of discrete event systems that can be described by a model that is “linear” in the max-plus algebra. In our previous work we have considered MPC for the time-invariant case. In this paper we consider an adaptive scheme for the time-varying case, based on parameter estimation of input-output models. In a simulation example we show that the combined parameter-estimation/MPC algorithm gives a good closed-loop behaviour.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive model predictive control for max-plus-linear discrete event input-output systems

Model predictive control (MPC) is a popular controller design technique in the process industry. Conventional MPC uses linear or nonlinear discrete-time models. Recently, we have extended MPC to a class of discrete event systems that can be described by a model that is “linear” in the max-plus algebra. In our previous work we have considered MPC for the time-invariant case. In this paper we con...

متن کامل

Adaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network

An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...

متن کامل

Adaptive Tuning of Model Predictive Control Parameters based on Analytical Results

In dealing with model predictive controllers (MPC), controller tuning is a key design step. Various tuning methods are proposed in the literature which can be categorized as heuristic, numerical and analytical methods. Among the available tuning methods, analytical approaches are more interesting and useful. This paper is based on a proposed analytical MPC tuning approach for plants can be appr...

متن کامل

Real-Time Output Feedback Neurolinearization

 An adaptive input-output linearization method for general nonlinear systems is developed without using states of the system. Another key feature of this structure is the fact that, it does not need model of the system. In this scheme, neurolinearizer has few weights, so it is practical in adaptive situations.  Online training of neuroline...

متن کامل

Stabilization of max-plus-linear systems using model predictive control: The unconstrained case

Max-plus-linear (MPL) systems are a class of event-driven nonlinear dynamic systems that can be described by models that are “linear” in the max-plus algebra. In this paper we derive a solution to a finite-horizon model predictive control (MPC) problem for MPL systems where the cost is designed to provide a trade-off between minimizing the due date error and a just-in-time production. In genera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003